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DAMPING IN PITCH AND ROLIL OF TRTANGULAR o
WINGS AT SUPERSONIC SPEEDS : T - -

By Clinton E. Brown and Mac C. Adams

A method 1s derived for calculating the damping cosefficients in _
pltch and roll for a series of triangular wings and & restricted serles N
of swepbtback wings at supersonic speeds. The elementary "supsrsonic - -
sourcs" solution of the linearized equation of motion is used to find
the potential function of a line of doublets, and the flows are obtained
by surface distributions of these doublet lines. The damping derlvatives
for trlangular wings are found to be a function of the ratio of the T
tangent of the apex angle to the tangent of the Masch angle. As this
ratio becomss equal to and greater than 1.0 for triangular wings, the
damping derivatives, 1n pitch and in roll, becoms constant. The damping
derivative In roll becomes equal to one—half the velus calculated for
en Iinfinite rectangular wing, and the damping derivative in pitch for
pltchiing ebout the apex becomes equal to 3.375 times that of an
Infinite rectangular wing.

INTRODUCTTION

In reference 1, a straightforwerd method was found for calculating _
the 11ft and the drag due to 11ft of trianguler wings. The present e
paper extends the method to the calculetlon of rolling and pltching
motions of the wings. The damping coefficlents in roll and pitch for S
the limiting case of very slender wings have been calculated (reference 2).
The presgent theory is not limited by the slze of the apex engle, and
trianguler wings with leading edges shead of and behind the Mach cane
originating at the apex of the wing are treated.

In the present theory, based on the linearized equations of motion,
the wlng 1s represented by a doublet distribution which can be shown to
be equivelent to a vortex distribution. An integral equatlion is found
which can be easily solved by analogy with known reletions for two—
dimensionel incompresslible flow. The pressure distributlons presented
mey be used to calculete the demping coefficlents of a limited ssrles of
wings for which the trelling edges are cut off so that they lie ghead of
the Mach cone springing from thelr foremost point.
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SYMBOLS

coordinates of field point (see fig. 1)

coordlnates of a source or doublet

disturbdnce—potential function

potential of supersonic source

potentliel of supersonic source distribution
potentlial of supersonic doublet distribution
potentlal of a line of doublets

gource or doublet strength

tangent of half-epex angle
1t forcé)

1ift cosfficlent T
EQVQS

Pitchi ment
pltchling-moment coefficient < tehing mo n)

%—pv%c—

rolling-moment cosfficilent (Rolling nt)

2
%pv Sb
half of apex angle of wing

doublet—line—distribution function

root chord

b/2
mean aserodynamic chord ¢ = éu/\ (Iocal chord)2 dy = %c
0

point about which the wing pitches
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H o ©

=

E*(pC)

Mach number
density of fluid

free—stream veloclity

incremental velocity component in x~direction

1lifting—pressure coefficilent Lifting pressure
Lov2

2

A= R [ - Bo(s2 - 2B

wing ares ' EE——
enguler veloclty of piltch
angular veloclty of roll
maximum gpan of wing
constant

z—component of velocity

amell quentity

/2
complete elliptic integral f /l — (1 — B2C2) gin®n dn
0
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n/2 .
F1(BC) complete elliptic integral f dn
0 /1-(1-p2c2) sinen
Subscripts:
q pltching condition
P rolling condition
1 incompressible

ANAIYSIS -

Solutions must be found that satisfy the linearized differential
equation of a nonviscous compressible fluild written

23°%0 3% 3% _
ST T2 (1)

where x, y, z are Cartesian coordinates (see fig. 1), and @ is the
disturbance-potentlal function created by the wing. An elementary
solution of this equation kmnown as the potentlal of a supersonic source
mey be written

¢O = —A ——————————— ' (2)
V& - x)2 - (@ - 7002 - FP(z — 21)?

The quantity A 1s the strength coefflcient of the source. New
golutions mey be obtalned by superposition of such potentisls as shown
in reference 3. For exemple, & dlstribution of sources over a portion
of the xy—plane would glve the potential

ey & "A(xl’ yl) dx; dy
wod ), 1
3 1

;(x - xﬁs '13223’ - 73:72 - 5522 )

whers the limits chosen must be such that all sources willl be located
wlthin the forward Mach cone from the field point (x,y,z). Another
solution may now be obtalned by differentlation with respect to any of
the coordlnate directions, that is,
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3¢ | :
s
a), ans _A(xl:yl) d'xl d-yl
=g;£ ]\ (%)
3 %1 Wx —x;)2 = 2(y — 3, )2 — 222

This solution, however, may be considered the vertical or z—component
velocity of the source—distribution potential ¢s, and as shown in
reference 3

¢D = ﬁtA(X,Y) (5)
&z —>0

The step teken in equation (%) also corresponds to the formation of =
doublet potential, that is, ¢D represents & dlistributlon of doublets

over the xy-plene with strengths proportional to A(xy,y1). For any

known doublet distribution, the wveloecity compoment paraellel to the surface
in any direction s msay immediately be obtained from equation (5) :

Y 3s O (6)

The foregoing results are analogous to incompresslble—flow relations and
it may be stated 1n general that for every doublet distribution there 1s

a vortex distribution which will produce a similer fiow. The vortex
digtribution and doublet dlstribution are directly related by equations (5)
and (6). These simple concepts, glven first by Prandtl (reference 4), may
be used directly to obtain the solution of problems in which the pressure
distributions are given, such as eirfolls of uniform loading. If the
equation of the surface 1s glven and the pressure dlstribution is required,
integral equetlions must be solved. In certain cases, the problem may be
simplified 1f the form of the flnal potential is known. In reference 2
the dilsturbance potentlal for wings of very low aspect ratio was found t
be in the form _ o -

¢ « 22(L.9) (7)
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This form of the potential appears quite logical from the standpoint of
satlefying the boundary condiltlons for stesady rolling or pitching. . In
the following enalysls, the assumptlon of a potential in the form of
equation (7) 1s shown to be correct; however, it should be pointed out
thet the potentisl of thls type must be restricted to the linearized
theory and 1s not of the same general nature as that of a conical field
which exists even in the nonlineer problems.

From equation (7) the doublet distribution over the surface will

e in the form
g
= x2p( 21
A_xli’(x) (8)

and undar the essumptions of the llnearlzed theory the lifting—pressure
coefficlent 1s now:

hvk

)+ . L
11:1]_ (yl) yl f,ﬁi) (9)

The formation of the Integral equetion follows the method of
reference 1. A potential that represents & line of doublets in the
xy—plane at an angle tan™ ly to the x-axls is derived in the form of
equation (7). Use is made of the boundary conditlions to set up en
integral equation that introduces the unknown distribution function f(o).
The potential of the doublet line may be obtained by following a procedurs

P=

similar to that used in obtalning equations (3) and (4), and by substituting

the expression for A glven in equation (8) into equation (4). The
expresasion cobtalned in the following equetlon mey be seen to reprssent a
line of doublets along which the doublet strength increases as x3:

y % -3 dx
g-2 [ s A N
320 fx—m ) - By — oxy )2 — poz

2 2
. _pz(x—8 oy) 3 coth Xt — £
(1 — p2o2)5/2 t2 -1
, 282z Vx2 — 82(y2 + z2)
(1 — p2c?)2

(10)_
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where - S

¢ - (x — p2oy)
V1 - 8262 [/x® — p2(y2 + 22)

and x' is the value of x; for which the denominator of the integrand

vanishes, The potential of the complete wing may now be obtained by an
integration with respect to the dimenslonless parameter o

c
¢=f—c £(o)gy, do o (1)

where tan—lC = ¢, the half-apex angle, and f£(o) is an unknown distri-—
bution function. The z—component velocity w cen be written for B g-

approaching zero

a(pe)

80 5

_3¥_ pe(o) (@ — pB00) . ¢ B<;2—1v>

w-az- o'd (l—ﬁ202)5/2 3cothl§—g—27£-—zaz—
—3C

\ o fBC pe(o) Y1 — p262

W R IT: d(Bo) (12)

where 0 = % for convenience. The boundary conditions for rolling mey
now be wrltten

<
i

-By

or _— e e — T

= —po (13)

HIg
|

For pltching sbout the y—axis, there is obtalned

=-—qx
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or
-—

Introduction of equations (13) and (1%) into equation (12) provides
Integral equetions which theoreticelly can be solved for the unknown
function f(g). Simpler.relations, however, may be obtalned if
equation (12) is differentiated twice with respect to 6 +to obtain the

quentity égggézl. The method for differentiating ls indlcated in the

appendlix and gives

aeé‘;’ N A fﬁ“—ﬂ) p3(0) a(po)

(Bo — po)*

C 3f 1"
. 6&'{:?235_/“: 3t (o) d(%c:) _ um [f 1(]6) f(gﬂ (15)

p(6+n) (Bo — pe

The boundary condltions requlre the foregolng quentity to be zero for
both rolling and pitching with the additionel requirements on f£(o) that,
for rolling, at the polnt 6 =0

(w/x)P =0 (16)
end, for pitching,
B(w/x)q
— %0 . (x7)
J6

Equation (15) now yields, for rolling,

(6-n) £(a), do £(0), do [f"<e> (8)
lim € p, flo)y = 8
n—>0 — J[6+q) (c-— 9) K * n3 ° 08

=
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and, for pitching,

1im (6-n) £(0), do ¢ f£(o) do £"(e)  £(8)
6 6 —a 4 1> = 0 (19)
e f—c (G- ol f(em) (o — o)F n a3 (19

Equations (18) and (19) are identicel to the equetions that would be

obtalned for similar boundary conditions on a two—dimensional flat plate

1f an analogous process of disgtributing the doublets were followed. (See
appendix.) The analogue for the rolling motlon of a triangular wing

would be a two—dimensional flat plate rotating about its midchord point == _
in a stationary stream. The surface potential distribution apd therefore

the doublet distribution would be

f(cr)p = K,o /0% — o2 S — -(20)

For the plitching condition the analogue would be a two—dlmensionsl
flet plate in a stream flowlng normasl to the surfece. The potentlal or
doublet distribution would be T

£(o)g = Ky 02 — 2 (21)

These potentials, which can be found in references 2 and 5, satisfy -
equations (18) and (19) by analogy; however, the conditions of equations (16)
and (g.'z)/m.)lst be shown to be satisfied. For the calculations of (w/x)y

w/x
end _bﬁ_q’ and the evaluation of Kp and Kq, only one value of 6

need be considered. This value maey conveniently be set equal to zero. Far
rolling motion, equation (20) indicates the doublet distribution to be
antisymetric. Therefore the value of w/x at 6 = O must be zero, and
the condition of equation (16) 1s satisfied. For the pltching motion,

the doublet distribution 1s symmetricel sbout 6 = 0 and therefore the

quantity &ze‘él must be zero at 6 = O and the condition of equation (17)
ig satisfied.

The constants Kp and Kq may now be evaluated from the relations
obtalined in the appendix for 6 =0 e



10

¥
X

-q.

v, [

BC
+ Kq‘][

n—0

1tm BC
[

NACA TN No. 1566

V622 — g22 '
B7o- - B tanh™ /1 — 202 a(Bo)

—BC

@ - 2e2)/2

-8c (1 -

BC p2c2 i B(e—) [p2c2 - p2
BC_BQC@d(BU)+K_/’\ N el a(po)

lim

o

p202)2 B2RPQ — p202)2
/6202 — p2c a(Bo) — 2ookg (22)
Bo+n) B2 — p262)° Bn

2 |
B%e2/pPC” — %% oL i = B2 a(po)

@ - p22)5/2

ple—n) f22 _ BC  p2c2 — pece

g(8+n) p2o2

5202‘/‘32(;2 - p2g2 a(po) — KP fBC LB/ 202 — 3202 a(po)
@ - 822" —8C (1 - 2P)

(23)
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Equations (22) end (23) may be integrated by use of tables (reference 6)
to give

p— - JR—

22 2~2
2 — B=C t B=C
p = W&, |=———— E'(pC) — ———— F*(pC) (2k)
- 22 o2
1l-2B87C B=C
q = 7K, | —————— C¥(BC) +‘———F'(BC) (25)
S M- 1'— gecR

F*(BC) and E'(BC) are complete elliptic integrals of the Pfirst and
second kind.

The pressure distribution for the rolling wing msy now be obtained
from equations (9), (20), and (24) and the pressure coefficlent is

Lo
P = xp026 - (26)
o 2.2 :
v g_:ﬁ_cz Et(BC) — ﬁé— Ft(pC) 1/02 — g2
1~ p2c? 1 - g2

Integration of the pressures over the wing surface gives the forces and
moments acting on the wing. The nondimensionel derivative C; may then
be found ?

¢, = = (27)

P > — p2c2 822
b |———— E!(BC) — ———— F*(BC)
[ 252 1 g2c2

In the analysis the plitching axis has been taken at the wing spex;
however, in application 1t 1s desirable to obtain the pressure distribu—
tion and the force and moment coefficients for pitching sbout any point.
A superposition of motions 1s therefore reqgiilired. The pitching motion
about any polnt Xy can be made up of a pure pltching motion about the
apex of the wing comblned with a vertical transletional motion of
velocity qxgy-e The pressure distributlion for thls translational motion

corresponds to that of a wing et a constant angle of attack of



2 - NACA TN No. 1566

x .
- Svg (See references 1 and T7.) The pressure distribution for the
constant angle ©of ebttack — S-_;Q is
—402q;
P= 0 (28)
vE! (BC) i?ca - 62
Combining equetions (9), (21), (25), and (28) glves for the pressure
distribution in the piltching case
B ) — op2 202 _ T
VR -2 (L2 2 pa(go) 4 B2 pi(po) ¥R (PO)
1 -87C 1l - B=C

Integration of the pressures over the wing surface end formation of the
nondimensional derivative yields

o - 6xC _ LnCx (30)
242 -
T L= p(po) . BC _gi(pe) RO
1l-87C 1l — g~=C
and
—6::0@ -2 hn:Cxo( - 1‘_9)
(o]
1 — 26202 ., B=C GE*(BC)
L 28~ Et(BC) + ———s— F'(BC)
1 - p2c? 1 — g2

where T 1s the mean aerodynamic chord.

Calculations of these derivatives for triangulsr wings having their
leading edges outside the Mach cone are most saslly made by the source
distribution method. In thile method, the upper end lower sldes of the
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wing may be consldered independent of each other. The source distribution
function for the rolling wing is b SO

ap (7)) = Ky (32)

whereas that for the pltching wing 1is . o R

Sqél,YD « K—'i]_ (33)

The calculation of the pressure distribution is not presented, since the
subJect of the integratlion of source distributlons has been well covered
in reference 3.

The pressure dlstribution for rolling wings outside the Mach cone has
been calculated to be

. . -
P = hp07x 5 (1 + p2CO) cos * :I;BECG - (1 - B2cH) cos™t 1 - B%s
(B2 - 1)3/ B(C + 8) B(C - o)
(3k)

Integrating the pressures over the wing and expressing the derivatlve in
nondimensional form glves

61, = 55 S (39)

For the pressurs distribution due to piltching about the point X5, @
combination of flow patterns must again be used. The pressure distributim

q
of a wing at uniform anglie of attack _%xo is (reference 3)

o _ hax0 -1 1-p%e -i 14 gece:I (36)

ﬁV]/Baca B(c - @) B(C + 6)

The pressure dlstribution for pltching then becomes o -
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P - hqx EBCVS - p262 . g3c3 — 2pCc ~ BB a1 5205
we | 202 — 1 (B2c® - 1)3/2 B(C + 0)

L BX3-28c+ 80 11— 820
(p2c2 — 1)3/2 B(c —8)

L C 2
- qj-{oﬁ cos™ 1+ PCO + cog™2 l:—E?E?- (37)
nvs/?ce -1 B(c + o) B(C —8)
The nondimenslonal derivatives CL and Qm then become
q *} .
8x
8 0
Cp =S = — 8
g "B 85 - (38
9 -8 —= 8
=2 (1-P)
= - + 1-= (39)
qu B BE c .

DISCUSSION AND CONCLUSIONS

Expressions for the lifting-pressure coefficlents over triangular
wings in roll are given in equations (26) and_(34%) and in pitch in
equations (29) and (37). Equations (26) and (29) are for wings
inside the Mach cone and equations (34) end (37) for wings outside
the Mach cone. Typical pressure distributlons are shown in figure 2
in which the pressure distributions for the two wings in pitch are
for pltching about the apex.

Expressions for the quantitles CZP, CLq’ and qu are given in

equations (27), (30), and (31), respectively, for the case of the wing
inside the Mach cone and in equations (35), (38), and (39) for wings lying
outelde the Mach cone. It will be seen that the parameters BCZP, BCLq,

and quq mey be expressed as functions of PBC where
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tan € -

C =
B tan

The =tability derivatives may therefore be plotted against thls parameter,
to glve curves which will hold for all trienguler wings at any Mach number.
These curves are glven in figures 3, 4, and 5. For values of BC
approaching zero the values of the derivatives closely approach those
given 1n reference 2 which were based on the assumption of very low o
agpect ratlo. .

For values of 8C 21 (that is, for the wing lying outside the Mach
cone), the quantities BCZP and chq become constant, and equal to

- %‘ end -1, respectively, (the pitching being about the %c point). TIn
comperison, the value of BCZP and BC‘mq for infinite-span, rectangulsr

wings are — % and — %, respectively, (the pitching being about ‘the
leading edges).

It should be pointed out that the pressure distributions given in
this paper mey be used directly to calculate the dempling in pltch end
roll for wings having trailing edges cut off shead of the Mach cone, the
most interesting of this series being the so—called "arrow wings."

Tt is apparent that a suctlion force exists at the leading edges of
wings in pitch and roll whenever the leading edges ere swept behind the
Mach cone. A method for obtaining the values of these suction forces
was derived in reference 1.

Langley Memorial Aeronsuticel ILaboratory
Nationel Advisory Committee for Asronautics
Tengley Field, Va., December 12, 1947



APPENDIX
METHOD FOR DIWFERERTTATTON OF EQUATION (12)

The expression for w (equation (12)) cannot be used directly when =z 1is set equal to zero

because of a troublesacme singularity In the term 5 5 and the occurrence of an indeterminete form
-1

under the Integral slgn. To obtaln the value of w omn the surface, however, 1t is possible to

integrate end then set z equal to zero. The troublescms parts of eguation (12) come fram the terms

involving ‘ 5 —. These terms, wfi‘i:ten out, may be integrated as followa:
-1 -
: r .
BC 2 2
. p=z 2
p—r nof Va2 An\a - 2 -] (1—520‘6)
e | OGRS o : - = ;
1-p2o2) ' 2.2 ) F
~BC (Bo—58)2 + (1-&902)'3—:} (1-8%°) [(ﬁo—ae)2 + (8% )R ‘”‘]
! I~
i
| 2
_ 8¢ e de(c)(l—ﬁEce) ]
B (o) (1-6200) 2 1—p62(Bo—po ) JR— e e ot (1_62.2Y°
- s T + L - %2 d\pajipo—e) L \\—»o ) |
2 2\2 2 2 p\pez2 2 o o\p2z° d(Bo)
(-822)2 [(po-po)® + Q2P )E _gg (BoPO) + @25
. ! - A-$C x

(1)

9T

*ON N&L VIVN

T

99%




Introducing the limlts and then setting z = 0 glves g
. . BC d,;f(u)(l — g2a0)° g
_pe(e)(@ — gRe0) - g% pe(c)(1 + pPoc)PL — pPeR . m a(Bs) | (1 2R .
(1 — £262)"(pc — po) (1 - B2c)(pC + po) Bo — Bo a(po) G
Yy &
(a2)

The integral term of the expreseion (A2) 1s improper, however, and muet be evaluated at the singular
polnt O = o. If the expreselon (A2) 18 now Integrated by parts, account being taken of the aingular
point, there 1s obtalned with =z = 0

p(o-n) — o)’ s - go0)°
n]j:o mf l; p{o)(1 — p=ad) 2 d(Ba)j’ oL - B2 [( e (a)(1 — p=cé) d(BU):I

e 1 - %62)"(po ~ po Ble+n) | (1 — 8262)°(Bo ~ po)?

- = J> (3)
1




Equation (12) may now be rewritten for w/x with z = O:

[
g‘ = nimoif

—fC

B (o)1 — p26P(1 — B 09)2 _ 382(0) (1 - 8200) coth1f 4(80)
@—ﬁﬂeﬁ—w) G - B2RY/2

, 262(0) ﬁﬁ““ﬂ*ff)%%mﬁ#ﬁu ﬁm
647

(- PR)° p (1 - 8262)°(Bo — pO)°

— (U)(l - BEGB) cothi"ls afas) o EBf(U)VE - 3262

(1 - p2)* T - 2P

Following Leibnitz! rule for differentia‘tion under the integral sign and collscting terms gives
Pinally:

~

L

gT

99ST ‘ON NI VOVN



stuf) _ 1t | [P0 3p30p(0) ol o) (300 +280 + B0RPR)z (o) X
ol C-epl T E g - per
pop°e (o) a(go) —  p2r(a) a(po) + 2pPr ()i — p°P 4(8o)
" = P60 ~ RO A — 8%6°(1 — §26?)(po — pe) (Bo — pa)3
. e ,_3B3of(a) cothLt a(aa) 2(3c + 2B6 + POBR02)(a) 4(50)
Ja(o+m) L(l - 22)/2 . i - @R - p2)°
pop2¢ (o) _ 822 (o) 1(6o) + 2p%e(o)/1 — PP )
1/1 — B262(Bo — pO)° 2(po) V1 - 262(1 — B2e2)(Bo — pO) (po (Bo — go)3 (po
]
__opef(e) A — p2e2r(e) (15)
nﬁ — PR 1 .

9GGT "ON NI VOVH




The second differentietlon now givea

o2

2(1;[1 1im { B(6-n) p3f (o) ﬁBf(cr)
P 10 6ﬁ __-E\,Bu s d(Bo) + 6‘£ n{n.u.-nl) = ,39)1* d(Bo)
T 3292 F..u(g) . f(B)_ll (46)
' L " n3 1]

The game process may be carried through for an incompressible, two—dimensional flow. The potentlal of
a single doublet at a point (yp,0) in a two—dimensional field (y,z) would be (reference 8)

= 2 (A7)
’ (3 —7)% + 22

from which wy, the velocity normal to e flat plate extending along the y~exis from ~C to C,
would be

g7
vy - f £(y,) dy [- - (a8)
1 -0 1 1 (v )2-9.32 {vu.-—v)a-g-ze
L\i ¥y Wl v B
2y
2
Integrating by parts, then setting z = 0 as in equations (Al) to (Ah) gives for z = 0 :
£
1im rf‘-?""‘) £(y1) 4y J" 2{y1) a5y _ 2e(y) (29) &
LA] + - A9 .
“"’Oi. < (y-7P2 Y@M Gy -¥? 0 j ]
o




Differentiating twice with respect to y glves

22w _ 1m | PO gy o, C  6e(y) an ke(y)  e"(y) (120)
S e ) (ry = 7) f(y+n) (rp —y)* o3 1o

This equation, except for the factor J1 — 6%, 1is analogous to equation (A6). When the bomndery
3% (w/x)
d62

are then seen to be solutions of equation (A6).

conditlons require the term

to be zero, the factor may be omitted and solutions of equation (ALO)

"CN NI VOVN

9951
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Figure 1.- Coordinate system,
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Figure 2.~
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Leading edge behind Mach cone, Leading edge ahead of Mach cone,

Pressure distributions for roliing and pitching about apex.
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Figure 3.- Stability derivative Cl for triangular wings,
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Figure .- Stability derivative Cmq about the §c point for triangular wings,



